Verizon is proving to all of us that 5G millimeter wave can effectively replace landlines in many places. The technology works. However, CEO Lowell McAdam is clear the financial case is still to be proven. Rupert Wood of Analysys Mason is an always interesting analyst. He's speaking at the excellent TNO Ultrabroadband Conference June 27. 

In particular, can the cost be brought down enough to make money with a 5G millimeter wave network for fixed wireless? The range today is short, which means you'll need many, many cells with a massive backhaul network. One estimate I've heard is that the U.K. would need a million or so. Building that is so expensive should you go all the way home with the fiber?

Rupert's tentative conclusion: the new 5G entrant would need to "buy/build something like the network you’re wanting to displace." He looks at the question of capital efficiency. (More of his comments below.)

A major overbuild is certainly possible; Verizon is spending $300M on fiber in Boston, where they want to turn off their copper.

Some premises would get fiber direct; others, a millimeter wave network. In other places, the incumbent telco has enough fiber to bring the cost down. Without a doubt, millimeter wave will be the right choice in some places. 

Two claimed technical improvements would make a major difference. Ericsson's Karolina Wikander points out that today's wireless backhaul has very low latency and might work for less expensive backhaul. NTT's CTO Onoe believes that beamforming can improve millimeter wave reach; the short range of mmWave may be a "myth." They are both respected engineers worth listening to, but neither technology is established.

Onoe and almost everyone else doubts millimeter wave for mobile will see volume until well into the next decade. Linley Gwinnapp shared with me a private analysis paper that points to the possible high cost of millimeter wave mobile phones.

"Processing 5G’s wider channels and extreme data rates could require 10x more transistors than in today’s phones; these modem chips will be very expensive even if built in 10nm or 7nm technology. Without Moore’s Law, these chips won’t decline in price over time. Furthermore, the higher data rates operate only in new bands at 3GHz and above, adding RF components and antennas to existing designs.

(Linley has a great headline for the story that Intel is exiting 3G and 4G modem chips because their Atom chip didn't make it: Intel Exits Mobile as Atom Bombs. Intel has lost something like $10B over the years trying to find a niche in communications chips. Will Strauss, another analyst I respect, has a colorful look at Intel's struggles.)

Is Moore's Law dying? Marconi Fellow Henry Samueli has contended for several years that a Moore's Law scaling will become challenging as we approach atomic scale. Most chip engineers agree with him. If you listen to Henry closely, you'll realize he is not saying chip progress is over. The historic performance increase driven by smaller feature sizes needs to slow, but shrinks are unlikely to be the driving force after the next few years. I'm pretty confident that advances like faster stepper motors will continue bringing down chip prices, but I suspect heat and size will be harder to advance. 

  As I wrote this, I came to the tentative conclusion that millimeter wave fixed will be a comparatively modest market until millimeter wave mobile becomes commercial next decade.

Millimeter wave is close to a natural monopoly; two networks cost nearly twice as much to build as one. The four to seven networks normally required for competition to work well seem impossible to me. At the moment, I'm a voice in the wilderness in policy circles saying we need to be ready for competition to become even more limited. Competition as the only solution has become close to religion for most policymakers. Competition is great when it works. Often it doesn't work.

Mike O'Reilly and Jessica Rosenworcel (whom I respected) are burying their heads in the sand because they don't know what to do about weaker competition,

 Here's the note from Rupert Wood. The high capital cost of millimeter wave is challenging.

In thinking about whether 5G is a threat or an opportunity for fibre, I think it’s important to stand back from the raw bandwidth issues, because we don’t know what they’d be in real life for 5G, and think about capital efficiency. FTTH has to be rethought as a shared network with multiple functions, one of which  - still the largest -  is broadband. Having access to an existing dense optical distribution network in the right urban locations, and with sufficient flexibility to deliver multiple services (e.g. with NG-PON2 overlay) including x-haul for small cells/C-RAN/5G, is probably the most capital-efficient way forward.


There is no growth in core mobile revenue if mobile cannot find a way to displace fixed NGA connections. 4G/4.5G has proven largely incapable of doing so and mobile remains a tiny proportion of Internet traffic. Mobile data traffic growth is markedly down in mostadvanced markets (though not in the USA if the latest CTIA figures are to be believed), mobile has not been able to address the great indoors in a cost-effective way, and this is leading / will lead to a steady erosion of mobile share of overall telecoms revenue. Moreover, fixed data traffic is growing fast (sometimes faster than mobile) in many of these markets. So line substitution isn’t happening (FBB is still growing), and data traffic substitution is slowing down or even reversing, as in Japan.


If 5G is really going to threaten FTTx/DOCSIS3.x, it needs to find a way to deliver on a cost-effective basis, 300-500GB per month to each household (several operators are getting 200GB+/month average on fibre already). This I doubt is possible without buying/building quite a lot of the kind of network you’re wanting to displace. The bulk of the real cost of 5G will be, as with FTTH, in the infrastructure, planning, permissions etc., not the technology. Much would depend on the viability of wireless x-haul (including self-backhaul) for 5G in urban environments, but if FTTH is in place then you’d use it because it is a much faster and more capital-efficient way of proceeding.


FTTx/G.Fast probably won’t be enough for x-haul (especially as much of it will be FTTC), and this may be true for HFC/DOCSIS too.

The market structure in the US may deliver different strategies and different outcomes because unusually it has national mobile plays, but only sub-national fixed plays. In long-term, though, the capital inefficiency of outside-in will I think make mobile-only or mobile-first a very tough business to be in.

I’m planning a report this summer on the subject.


Often interesting

Latest issue

 Gig LTE & Massive MIMO ushering in the Age of Wireless Abundance

Wireless Abundance is here: What the new tech means
Sprint & T-Mobile Charge to be 1st in U.S. to Gig LTE  AT&T
Kitahara of Softbank “I am crazy about Massive MIMO”
20 Gig mmWave, Massive MIMO & Gig LTE at the Huawei MBBF
LTE gets to the gigabit explained for non-engineers
Massive MIMO explained.
2017's Big Gigabit story: Qualcomm 835 is ready
Doubling speed with 4x4 MIMO & 256 QAM at T-Mobile
Netgear Nighthawk M1, Telstra do "gigabit class" LTE
Spectrum price down by half
Dish and the telcos see big asset cut
Shorts on 3GPP,  NYU research, Ralph de la Vega, 5G new radio

Read more ...

5GW News

dave right5G? 4G? Whatever the name, wireless is going to a gigabit, soon.  I've reported broadband since 1999 and now is the time for gigabit wireless. Catch a mistake or have news? Email me please. Dave Burstein


Stories worth writing

Starry may match Verizon 5G at half the cost
OFCOM in UK: Share all spectrum, even licensed
OFCOM's Boccardi: 26 GHz worldwide: U.S. goes 28 
Verizon 5G fixed tests will be only 100's of homes
Massive MIMO FD at China Uni, Tele, Huawei, ZTE





Verizon and AT&T burying price increases in fees. 

Huawei's Richard Yu intends to pass both Apple & Samsung in smartphones in five years. 

The 3,000,000,000 transistor Qualcomm 835 is a revolution. Gig LTE, incredible cameras, better VR & AR, & ... State of the art CPU, DSL, GPU, ISP tightly integrated

1,000 T-Mobile small cells 2016, 6,000 more coming. Tech Life

New $84 Reliance Lyf Wind 7S has a 5" screen, a quad-core Snapdragon, an 8 megapixel camera, and some extras. Not state of the art, perhaps, but completely usable at a modest price. 

Orange/FT 4G covers 97% of Poland, 96% of Moldova, but only 84% in France, Q3 2016. They have 113.5 mobile customers in Africa compared to 25.5M in Europe.


Read more ...