Massive MIMO is the next great step in mobile networks. Huang Yuhong of China Mobile and Hidebumi Kitahara of SoftBank are deploying hundreds of nodes and reporting performance improvements of 2X to 10X. Sprint in the U.S. and 3 in Austria are firmly committed. Gig LTE - 4x4 MIMO, 3/4 band aggregation, and 256 QAM is spreading rapidly in 2017; the next step will be the 64+ antennas and beamforming of Massive MIMO, some at millimeter wave. I had a chance to ask some experts a few questions so put together these. Others welcome.

in 2018-2019, what's a smart Massive MIMO deployment strategy for a network with growing traffic? 

At least 4x4 is the minimum for anyone building today, with many considering massive. For those with TDD networks, is there any reason today not to go massive where you need the capacity? If you don't need the capacity today but want an easy upgrade path later, what's the right design? (Are extra antennas cheap enough to go ahead; differences in radios; ...)

Can analog antennas bring down the cost, especially in upgrades? (AT&T thinks so)

What kind of terrain is likely to be on the low end (?3X) gain and where can you expect better?

All the Massive MIMO deployments have been single band, ~20 MHz. Can we aggregate three or four bands if they are contiguous? (Mexico) If the bands are not contiguous, when will that become practical?

M-MIMO TDD-LTE is deploying at China Mobile & SoftBank, but other carriers need FDD-LTE. How soon can we expect widely deployed quantities of FDD-LTE? 

SoftBank says they have tuned their network for better performance at the system edge. What kind of flexibility do system architects have? 

What other questions should system architects be asking?

In 2020-2024, what should we expect?

Massive-MIMO is still developing, with many software improvements likely. If today we are getting 3X-10X, how much better are we likely to do?

What should we be expecting in improved antennas?

Massive MIMO antennas are today too large for small cells except in millimeter wave. Will massive MIMO become practical for small cells in bands below 2 GHz? Bands below 5 GHz?

What's realistic for the low end of latency for Massive MIMO in a midband, say 3.5 GHz?

 

 

Newsletter

Often interesting

Latest issue

 Gig LTE & Massive MIMO ushering in the Age of Wireless Abundance

Wireless Abundance is here: What the new tech means http://bit.ly/Wirelessabundance
Sprint & T-Mobile Charge to be 1st in U.S. to Gig LTE bit.ly/STMOgig  AT&T bit.ly/ATTGIG2016
Kitahara of Softbank “I am crazy about Massive MIMO” http://bit.ly/MMIMOCrazy
20 Gig mmWave, Massive MIMO & Gig LTE at the Huawei MBBF http://bit.ly/Huawei20
LTE gets to the gigabit explained for non-engineers http://bit.ly/GigLteexplained
Massive MIMO explained. http://bit.ly/WHMassiveMIMO
2017's Big Gigabit story: Qualcomm 835 is ready http://bit.ly/BigGigLTE
Doubling speed with 4x4 MIMO & 256 QAM at T-Mobile http://bit.ly/2k1gEOQ
Netgear Nighthawk M1, Telstra do "gigabit class" LTE http://bit.ly/2k1s5Gq
Spectrum price down by half http://bit.ly/Spectrumhalfoff
Dish and the telcos see big asset cut http://bit.ly/auctionlosers
Shorts on 3GPP,  NYU research, Ralph de la Vega, 5G new radio

Read more ...

5GW News

dave right5G? 4G? Whatever the name, wireless is going to a gigabit, soon.  I've reported broadband since 1999 and now is the time for gigabit wireless. Catch a mistake or have news? Email me please. Dave Burstein

 

Stories worth writing

Starry may match Verizon 5G at half the cost
OFCOM in UK: Share all spectrum, even licensed
OFCOM's Boccardi: 26 GHz worldwide: U.S. goes 28 
Verizon 5G fixed tests will be only 100's of homes
Massive MIMO FD at China Uni, Tele, Huawei, ZTE

 

 

 

Datapoints

Verizon and AT&T burying price increases in fees. 

Huawei's Richard Yu intends to pass both Apple & Samsung in smartphones in five years. 

The 3,000,000,000 transistor Qualcomm 835 is a revolution. Gig LTE, incredible cameras, better VR & AR, & ... State of the art CPU, DSL, GPU, ISP tightly integrated

1,000 T-Mobile small cells 2016, 6,000 more coming. Tech Life

New $84 Reliance Lyf Wind 7S has a 5" screen, a quad-core Snapdragon, an 8 megapixel camera, and some extras. Not state of the art, perhaps, but completely usable at a modest price. 

Orange/FT 4G covers 97% of Poland, 96% of Moldova, but only 84% in France, Q3 2016. They have 113.5 mobile customers in Africa compared to 25.5M in Europe.

more

Read more ...